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Abstract
Dynamic localization conditions proceeding beyond the nearest-neighbour
description have been established by applying the quasi-energy description.
The general energy dispersion laws one deals with concern a periodic but
commensurable dc–ac field like E0 + E1 f (t), for which f (t) = f (t + T )
and ωB = Pω/Q. Here ωB = eE0a/h̄ and ω = 2π/T stand for the Bloch and
ac field frequencies, respectively, while P and Q are mutually prime integers. A
reasonable centre of band generalization of such conditions has been proposed.

1. Introduction

The quantum-mechanical description of a charged particles, say electrons, moving on one-
dimensional (1D) lattices under the influence of periodic time-dependent electric fields has
attracted much attention over the past two decades [1, 2]. Specifically, there is a periodic
return of the electron to the initially occupied site when the ratio of the field magnitude to
its frequency is a root of the ordinary Bessel function of order zero [3]. These behaviours
serve as a signature to the onset of the dynamic localization effects. Such results are able
to be reproduced by resorting to the quasi-energy description, too. In this latter case, the
dynamic localization conditions rely on the so-called collapse points of the quasi-energy bands,
as discussed before [4]. On the other hand, the dynamic localization properties of electrons on
the 1D lattice under the influence of dc–ac electric field like [5]

E(t) = E0 + E1 f1(t) (1)

where f1(t) = f1(t + T ) are of a special interest for several applications in quantum
electronics, with a special emphasis on semiconductor supperlattices. We shall then use this
opportunity to discuss further details concerning localization attributes characterizing such
fields, by proceeding beyond the nearest-neighbour description. For this purpose a general
energy dispersion law like

Ed(k) =
∞∑

n=0

Rn cos(nka) (2)
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will be used. Here k stands for the wavenumber, a denotes the lattice spacing characterizing
the 1D lattice, and Rn are pertinent expansion coefficients. Concrete manifestations of dynamic
localization conditions will then be established by resorting to the collapse points characterizing
general quasi-energy formulae established before [5, 6]. To this aim a commensurability
condition such as given by

ωB = P

Q
ω (3)

where P and Q are mutually prime integers will be accounted for. Note that ωB = eE0a/h̄
stands for the Bloch frequency [7], while ω = 2π/T . To the best of our knowledge, such
conditions have not been written down before in an explicit manner, except for the limiting
case in which the quotient P/Q becomes an integer [8]. The influence of a dc-bichromatic
electric field has also been discussed, but the results concern only quasi-energy expressions
proceeding within the nearest-neighbour description [9]. So there are reasons to say that
dynamic localization conditions established before have to be updated by accounting for (2)
and (3).

2. Preliminaries and notation

Under the influence of a time-dependent electric field

E(t) = h̄

ea
EF f (t) (4)

the energy dispersion law (2) leads to the discrete time-dependent Schrödinger equation:

Hd(n � 0)ψm =
∞∑

n=0

Vn(ψm+n + ψm−n)− mEF f (t)ψm = i
d

dt
ψm(t) (5)

which incorporates a sequence of successive next-nearest-neighbour (NNN) hopping effects.
The electric charge of the electron is denoted by −e < 0, and EF denotes the field amplitude
which has the dimension of a frequency, while f (t) is a dimensionless function characterizing
the field modulation. This proceeds via Rn = 2h̄Vm as well as by virtue of the rule

k → Pop

h̄
= −i

∂

∂x
(6)

which also means that the momentum operator Pop is responsible for the related sequence of
translations. Accordingly, the free-field Hamiltonian implemented by (2) proceeds as

H(0)
d ψ(x) = Ed

(
−i

d

dx

)
ψ(x) (7)

which produces the hopping terms characterizing (5) in terms of the discretization ψm =
ψ(ma). It is clear that the usual nearest-neighbour (NN) equation gets reproduced as soon
as Vn = 0 for n � 2. In addition, the n = 0-term in (5) can be incorporated in a pure phase
factor:

ψm(t) = e−i2V0t cm(t) (8)

so that

Hd(n � 1)cm(t) = i
d

dt
cm(t) (9)

where

Hd(n � 1) = H(0)
d (n � 1)− mEF f (t). (10)
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Resorting to a orthonormalized Wannier basis, say 〈m|m ′〉 = δm,m′ , we have to realize that the
Fourier transform (2) relies on the matrix element of the underlying free-field Hamiltonian as
follows [5, 9]:

〈0|H0|m〉 = 1

2π

∫ π

−π
Ed (̃k) exp (−ĩkm) d̃k = 0 (11)

where by now k̃ stands for ka. We have restricted ourselves to the first Brillouin zone
k̃ ∈ [−π, π] as usual.

3. Applying general quasi-energy formulae

The Hamiltonian characterizing (5) and/or (9) is periodic in time with period T . This opens the
way to apply the Floquet factorization:

Cm(t) = exp(−iEt)um(t) (12)

where um(t+T ) = um(t) such as has been discussed in some more detail before [5, 6]. In order
to handle the commensurability condition (3), one resorts to an extra wavenumber discretization
like

k̃ = s + 2π
l

Q
(13)

where s ∈ [−π/Q, π/Q) and l = 0, 1, 2, . . . , Q − 1. This latter equation also shows that the
Q-denominator is responsible for the number of quasi-energy bands. The quasi-energy is then
given by [5]

En1 = 1

T

∑

j

〈0|H0|Q j〉 exp(iQ js)
∫ T

0
dt exp(iQ jθ(t))+ ωn1

Q
(14)

where j and n1 are integers. Now one has f1(t) = cos(ωt), so that

f (t) = ωB

EF
+ cos(ωt) (15)

in accord with (1) and (4), which also means that

θ(t) = EF

∫ t

0
f (t ′) dt ′ = ωBt + EF

ω
sin(ωt). (16)

Using (2) and (11) and inserting n1 = 0 then gives the quasi-energy

E0(s) = ω

4π

∞∑

n′=1

(−1)Pn′
Rn′ Q exp(−ins)Jn′ P

(
n′ Q

EF

ω

)
(17)

in accord with (2), where the sum is over positive integer realizations n′ of the quotient n/Q.
It should be specified that Jm(z) denotes the Bessel function of the first kind and of order m.
Intermediary relationships like

exp(iz sinωt) =
∞∑

m=−∞
Jm(z) exp(−imωt) (18)

and ∫ π

−π
d̃k cos( j k̃) cos(nk̃) = πδ j,n (19)

have been accounted for, too.
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After having arrived at this stage, we have to establish, at the beginning, the collapse points
of the quasi-energy band in terms of parameter values for which

E0 = E0(s;ωB/ω, EF/ω) = 0. (20)

One realizes, however, that (20) is unlikely to be fulfilled irrespective of s ∈ [−π/Q, π/Q)
when the quasi-energy such as is given by (17) contains several terms instead of a single one.
In this context, a reasonable ‘centre of band’ generalization of (20) like

E0(s = 0, ωB/ω, EF/ω) = 0 (21)

can be written down just by inserting s = 0 instead of s ∈ [−π/Q, π/Q). This amounts to
considering a selected sequence Qk̃/2π = 0, 1, . . . , Q − 1 instead of k̃/2π ∈ [0, 1).

4. Concrete realization of the dynamic localization condition

Let us start with a fixed value of the Q-denominator characterizing (3). Assuming that RQ �= 0,
but R2Q = R3Q = · · · = 0, gives the dynamic localization condition

F1 ≡ JP

(
Q
EF

ω

)
= 0 (22)

in accord with (17), which proceeds this time both in terms of (20) and (21). The interesting
point is that the complementary contributions to the energy dispersion law for which Rn �= 0
are irrelevant to the dynamic localization condition. More exactly, the dynamic localization
occurs irrespective of EF/ω when R1 = R2 = · · · = RQ−1 = 0. Equation (22) shows that the
dynamic localization occurs when QEF/ω is a root of the Bessel function of first kind and of
order P . This equation generalizes the result which has been presented before for the special
case in which P/Q becomes an integer [8].

Proceeding step by step, let us now consider that RQ �= 0 and R2Q �= 0 such that
R3Q = R4Q = · · · = 0. This time (20) is ruled out, but (21) yields the dynamic localization
conditions like

F2 ≡ RQ JP

(
Q
EF

ω

)
+ (−1)P R2Q J2P

(
2Q

EF

ω

)
= 0 (23)

which provides a higher-order generalization of (22). Of course, (22) gets reproduced as soon
as R2Q → 0.

Choosing for example Q = 3, P = 1, RQ = 1 and R2Q = 1/4, one readily finds that (23)
yields the condition 4J1(3x)− J2(6x) = 0, where x = EF/ω. This leads in turn to the roots

x1
∼= 1.311; x2

∼= 2.831; x3
∼= 3.426, . . . (24)

which are responsible for the appearance of dynamical localization effects. This results in small
corrections to the EF/ω roots implemented by (22) via J1(3x) = 0, i.e. to

x1
∼= 1.266; x2

∼= 2.366; x3
∼= 3.366, . . . (25)

respectively. The onset of such roots is displayed in figure 1.

5. Conclusions

In this paper we have succeeded in establishing the dynamic localization conditions
characterizing the motion of an electron in a 1D lattice with hoppings going beyond the NN
description in the presence of dc–ac electric fields like (15) for which the commensurability
condition (3) is fulfilled. This proceeds in terms of the collapse points characterizing the centre
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Figure 1. The EF/ω-dependence of F1 (dashed curve) and F2 (solid curve).

of the quasi-energy band (17), which amounts to considering that s = 0. Any such fixing
is accord with the very s-independence of (5), which also means that (21) can be viewed
as a reasonable generalization of (20). The dynamic localization conditions obtained in this
manner are useful in the description of higher harmonic generation [10], but related resonance
phenomena characterizing several areas of physics can also be invoked [11]. Moreover, the
present results are also able to provide a better understanding of transport and optical properties.
The generalization of dynamic localization conditions characterizing dc-bichromatic fields [9]
is also of further interest. The same concerns apply to dc-trigonal electric fields discussed
recently [12].
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